MIC-DKFZ/nnUNet
选择Linux环境运行该项目,Windows环境需要更改较多的参数,暂不支持。
可以查看另一篇
因为开源的MRI数据一般是4D的,即把所有模态拼接起来,可以用nnUNet的转换命令;私人数据一般是存放3D的不同模态,可以按照本文私人数据集(3D)
的方式处理,也可以将所有模态拼接起来,用nnUNet的转换命令。
开源数据集(4D)
1.1 文件夹目录
└─Task01_BrainTumour│ dataset.json│ ├─imagesTr│ BRATS_001_0000.nii.gz│ BRATS_001_0001.nii.gz│ BRATS_001_0002.nii.gz│ BRATS_001_0003.nii.gz│ BRATS_002_0000.nii.gz│ BRATS_002_0001.nii.gz│ BRATS_002_0002.nii.gz│ BRATS_002_0003.nii.gz│ BRATS_003_0000.nii.gz│ BRATS_003_0001.nii.gz│ BRATS_003_0002.nii.gz│ BRATS_003_0003.nii.gz│ BRATS_004_0000.nii.gz│ BRATS_004_0001.nii.gz│ BRATS_004_0002.nii.gz│ BRATS_004_0003.nii.gz│ BRATS_005_0000.nii.gz│ BRATS_005_0001.nii.gz│ BRATS_005_0002.nii.gz│ BRATS_005_0003.nii.gz│ ...├─imagesTs│ BRATS_485_0000.nii.gz│ BRATS_485_0001.nii.gz│ BRATS_485_0002.nii.gz│ BRATS_485_0003.nii.gz│ BRATS_486_0000.nii.gz│ BRATS_486_0001.nii.gz│ BRATS_486_0002.nii.gz│ BRATS_486_0003.nii.gz│ ...└─labelsTrBRATS_001.nii.gzBRATS_002.nii.gzBRATS_003.nii.gzBRATS_004.nii.gzBRATS_005.nii.gz...
1.2 json文件信息
nnUNet/nnunet/dataset_conversion/utils.py
里面的函数generate_dataset_json
可以生成相应任务的json
文件。
{
"name": "BRATS",
"description": "Gliomas segmentation tumour and oedema in on brain images",
"reference": "https://www.med.upenn.edu/sbia/brats2017.html",
"licence":"CC-BY-SA 4.0",
"release":"2.0 04/05/2018",
"tensorImageSize": "4D",
"modality": { "0": "FLAIR", "1": "T1w", "2": "t1gd","3": "T2w"}, "labels": { "0": "background", "1": "edema","2": "non-enhancing tumor","3": "enhancing tumour"}, "numTraining": 484, "numTest": 266,"training":[{"image":"./imagesTr/BRATS_001.nii.gz","label":"./labelsTr/BRATS_001.nii.gz"},{"image":"./imagesTr/BRATS_002.nii.gz","label":"./labelsTr/BRATS_002.nii.gz"},{"image":"./imagesTr/BRATS_003.nii.gz","label":"./labelsTr/BRATS_003.nii.gz"},{"image":"./imagesTr/BRATS_004.nii.gz","label":"./labelsTr/BRATS_004.nii.gz"},{"image":"./imagesTr/BRATS_005.nii.gz","label":"./labelsTr/BRATS_005.nii.gz"},...],"test":["./imagesTs/BRATS_485.nii.gz","./imagesTs/BRATS_486.nii.gz",...]}
1.3 转换数据
nnUNet_convert_decathlon_task -i /xxx/Task01_BrainTumour
转换的数据存在nnUNet_raw_data_base/nnUNet_raw_data/Task001_BrainTumour
,此时imagesTr
和imagesTs
里的文件名加了后缀"_0000"
, "_0001"
, "_0002"
, "_0003"
。
注意:此处Task01_BrainTumour
变为Task001_BrainTumour
。
私人数据集(3D)
直接转换数据,将数据存放到nnUNet_raw_data_base/nnUNet_raw_data/Task001_BrainTumour
2.1 文件夹目录
└─Task001_BrainTumour│ dataset.json│ ├─imagesTr│ BRATS_001.nii.gz│ BRATS_002.nii.gz│ BRATS_003.nii.gz│ BRATS_004.nii.gz│ BRATS_005.nii.gz│ ...├─imagesTs│ BRATS_485.nii.gz│ BRATS_486.nii.gz│ ...└─labelsTrBRATS_001.nii.gzBRATS_002.nii.gzBRATS_003.nii.gzBRATS_004.nii.gzBRATS_005.nii.gz...
2.2 json文件信息
nnUNet/nnunet/dataset_conversion/utils.py
里面的函数generate_dataset_json
可以生成相应任务的json
文件。
{
"name": "BRATS",
"description": "Gliomas segmentation tumour and oedema in on brain images",
"reference": "https://www.med.upenn.edu/sbia/brats2017.html",
"licence":"CC-BY-SA 4.0",
"release":"2.0 04/05/2018",
"tensorImageSize": "4D",
"modality": { "0": "FLAIR", "1": "T1w", "2": "t1gd","3": "T2w"}, "labels": { "0": "background", "1": "edema","2": "non-enhancing tumor","3": "enhancing tumour"}, "numTraining": 484, "numTest": 266,"training":[{"image":"./imagesTr/BRATS_001.nii.gz","label":"./labelsTr/BRATS_001.nii.gz"},{"image":"./imagesTr/BRATS_002.nii.gz","label":"./labelsTr/BRATS_002.nii.gz"},{"image":"./imagesTr/BRATS_003.nii.gz","label":"./labelsTr/BRATS_003.nii.gz"},{"image":"./imagesTr/BRATS_004.nii.gz","label":"./labelsTr/BRATS_004.nii.gz"},{"image":"./imagesTr/BRATS_005.nii.gz","label":"./labelsTr/BRATS_005.nii.gz"},...],"test":["./imagesTs/BRATS_485.nii.gz","./imagesTs/BRATS_486.nii.gz",...]}
# 只进行3d预处理,不进行2d预处理
nnUNet_plan_and_preprocess -t 01 -pl2d None
可以查看另一篇
可以查看另一篇
上一篇:Golang打开数据库句柄