JS之数据结构与算法
迪丽瓦拉
2024-06-01 01:38:06
0

前言


数据结构是计算机存储、组织数据的方式,算法是系统描述解决问题的策略。了解基本的数据结构和算法可以提高代码的性能和质量。
也是程序猿进阶的一个重要技能。
手撸代码实现栈,队列,链表,字典,二叉树,动态规划和贪心算法

1.数据结构篇


1.1 栈

栈的特点:先进后出

class Stack {constructor() {this.items = [];}// 入栈push(element) {this.items.push(element);}// 出栈pop() {return this.items.pop();}// 末位get peek() {return this.items[this.items.length - 1];}// 是否为空栈get isEmpty() {return !this.items.length;}// 长度get size() {return this.items.length;}// 清空栈clear() {this.items = [];}}// 实例化一个栈const stack = new Stack();console.log(stack.isEmpty); // true// 添加元素stack.push(5);stack.push(8);// 读取属性再添加console.log(stack.peek); // 8stack.push(11);console.log(stack.size); // 3console.log(stack.isEmpty); // false

1.2 队列

队列:先进先出

  class Queue {constructor(items) {this.items = items || [];}enqueue(element) {this.items.push(element);}dequeue() {return this.items.shift();}front() {return this.items[0];}clear() {this.items = [];}get size() {return this.items.length;}get isEmpty() {return !this.items.length;}print() {console.log(this.items.toString());}}const queue = new Queue();console.log(queue.isEmpty); // truequeue.enqueue("John");queue.enqueue("Jack");queue.enqueue("Camila");console.log(queue.size); // 3console.log(queue.isEmpty); // falsequeue.dequeue();queue.dequeue();

1.3 链表

链表:存贮有序元素的集合,

但是不同于数组,每个元素是一个存贮元素本身的节点和指向下一个元素引用组成

要想访问链表中间的元素,需要从起点开始遍历找到所需元素

class Node {constructor(element) {this.element = element;this.next = null;}}// 链表class LinkedList {constructor() {this.head = null;this.length = 0;}// 追加元素append(element) {const node = new Node(element);let current = null;if (this.head === null) {this.head = node;} else {current = this.head;while (current.next) {current = current.next;}current.next = node;}this.length++;}// 任意位置插入元素insert(position, element) {if (position >= 0 && position <= this.length) {const node = new Node(element);let current = this.head;let previous = null;let index = 0;if (position === 0) {this.head = node;} else {while (index++ < position) {previous = current;current = current.next;}node.next = current;previous.next = node;}this.length++;return true;}return false;}// 移除指定位置元素removeAt(position) {// 检查越界值if (position > -1 && position < length) {let current = this.head;let previous = null;let index = 0;if (position === 0) {this.head = current.next;} else {while (index++ < position) {previous = current;current = current.next;}previous.next = current.next;}this.length--;return current.element;}return null;}// 寻找元素下标findIndex(element) {let current = this.head;let index = -1;while (current) {if (element === current.element) {return index + 1;}index++;current = current.next;}return -1;}// 删除指定文档remove(element) {const index = this.indexOf(element);return this.removeAt(index);}isEmpty() {return !this.length;}size() {return this.length;}// 转为字符串toString() {let current = this.head;let string = "";while (current) {string += ` ${current.element}`;current = current.next;}return string;}}const linkedList = new LinkedList();console.log(linkedList);linkedList.append(2);linkedList.append(6);linkedList.append(24);linkedList.append(152);linkedList.insert(3, 18);console.log(linkedList);console.log(linkedList.findIndex(24));  

1.4 字典

字典:类似对象,以key,value存贮值

class Dictionary {constructor() {this.items = {};}set(key, value) {this.items[key] = value;}get(key) {return this.items[key];}remove(key) {delete this.items[key];}get keys() {return Object.keys(this.items);}get values() {/*也可以使用ES7中的values方法return Object.values(this.items)*/// 在这里我们通过循环生成一个数组并输出return Object.keys(this.items).reduce((r, c, i) => {r.push(this.items[c]);return r;}, []);}}const dictionary = new Dictionary();dictionary.set("Gandalf", "gandalf@email.com");dictionary.set("John", "johnsnow@email.com");dictionary.set("Tyrion", "tyrion@email.com");console.log(dictionary);console.log(dictionary.keys);console.log(dictionary.values);console.log(dictionary.items);

1.5 二叉树

特点:每个节点最多有两个子树的树结构

class NodeTree {constructor(key) {this.key = key;this.left = null;this.right = null;}}class BinarySearchTree {constructor() {this.root = null;}insert(key) {const newNode = new NodeTree(key);const insertNode = (node, newNode) => {if (newNode.key < node.key) {if (node.left === null) {node.left = newNode;} else {insertNode(node.left, newNode);}} else {if (node.right === null) {node.right = newNode;} else {insertNode(node.right, newNode);}}};if (!this.root) {this.root = newNode;} else {insertNode(this.root, newNode);}}//访问树节点的三种方式:中序,先序,后序inOrderTraverse(callback) {const inOrderTraverseNode = (node, callback) => {if (node !== null) {inOrderTraverseNode(node.left, callback);callback(node.key);inOrderTraverseNode(node.right, callback);}};inOrderTraverseNode(this.root, callback);}min(node) {const minNode = node => {return node ? (node.left ? minNode(node.left) : node) : null;};return minNode(node || this.root);}max(node) {const maxNode = node => {return node ? (node.right ? maxNode(node.right) : node) : null;};return maxNode(node || this.root);}}const tree = new BinarySearchTree();tree.insert(11);tree.insert(7);tree.insert(5);tree.insert(3);tree.insert(9);tree.insert(8);tree.insert(10);tree.insert(13);tree.insert(12);tree.insert(14);tree.inOrderTraverse(value => {console.log(value);});console.log(tree.min());console.log(tree.max());

2.算法篇


2.1 冒泡算法

冒泡排序,选择排序,插入排序,此处不做赘述,请戳 排序

2.2 斐波那契

特点:第三项等于前面两项之和

function fibonacci(num) { if (num === 1 || num === 2) { return 1}return fibonacci(num - 1) + fibonacci(num - 2)}

2.3 动态规划

特点:通过全局规划,将大问题分割成小问题来取最优解

案例:最少硬币找零

美国有以下面额(硬币):d1=1, d2=5, d3=10, d4=25

如果要找36美分的零钱,我们可以用1个25美分、1个10美分和1个便士( 1美分)

class MinCoinChange {constructor(coins) {this.coins = coinsthis.cache = {}
}makeChange(amount) {if (!amount) return []if (this.cache[amount]) return this.cache[amount]let min = [], newMin, newAmountthis.coins.forEach(coin => {newAmount = amount - coinif (newAmount >= 0) {newMin = this.makeChange(newAmount)}if (newAmount >= 0 && (newMin.length < min.length - 1 || !min.length) && (newMin.length || !newAmount)) {min = [coin].concat(newMin)}})return (this.cache[amount] = min)
}
}const rninCoinChange = new MinCoinChange([1, 5, 10, 25])
console.log(rninCoinChange.makeChange(36))
// [1, 10, 25]
const minCoinChange2 = new MinCoinChange([1, 3, 4])
console.log(minCoinChange2.makeChange(6))
// [3, 3]

2.4 贪心算法

特点:通过最优解来解决问题

用贪心算法来解决2.3中的案例

class MinCoinChange2 {constructor(coins) {this.coins = coins
}makeChange(amount) {const change = []let total = 0this.coins.sort((a, b) => a < b).forEach(coin => {if ((total + coin) <= amount) {change.push(coin)total += coin}})return change
}
}
const rninCoinChange2 = new MinCoinChange2 ( [ 1, 5, 10, 25])
console.log (rninCoinChange2. makeChange (36))

相关内容