【PaddleOCR-kie】一、关键信息抽取:使用VI-LayoutXLM模型推理预测(基于PaddleInference)
迪丽瓦拉
2024-05-29 12:28:30
0

背景:在训练自己数据集进行kie之前,想跑一下md里面的例程,但md教程内容混乱,而且同一个内容有多个手册,毕竟是多人合作的项目,可能是为了工程解耦,方便更新考虑……需要运行的模型和运行步骤散落在不用文件夹下的不同md里面……很无语,对于新手小白真的很不友好,因此在这里,按照一个正常工程的使用顺序,进行一个总结。

PaddleOCR进行关键信息抽取(kie),将是一个系列,分为多篇:
一:使用PP-Structure 文档分析中关键信息抽取,运行VI-LayoutXLM模型在XFUND_zh数据集上的推理模型,跑通推理
二:使用PPOCRLabel对自己的数据集进行关键信息提取的标注
三:进行自定义数据集的训练、自训练模型的评估、推理预测

这是第一篇:使用VI-LayoutXLM模型推理,测试关键信息抽取表单识别功能

文章目录

  • 工程中关键信息提取相关内容
  • 本文参考
  • 理论部分
  • step0、环境准备
  • step1、下载解压VI-LayoutXLM推理模型
  • step2、下载XFUND数据集
  • step3、使用模型进行预测(基于PaddleInference)

工程中关键信息提取相关内容

这里首先列出ppocr项目中与kie相关内容路径,方便查找,步骤从这些md中整合而来:

  • (本文主要参考这个)关键信息抽取-快速开始手册:.\ppstructure\kie\README_ch.md
  • 关键信息抽取全流程指南:.\ppstructure\kie\how_to_do_kie.md
  • (自己模型训练评估与推理)关键信息抽取手册md.\doc\doc_ch\kie.md
  • 关键信息抽取算法-VI-LayoutXLM.\doc\doc_ch\algorithm_kie_vi_layoutxlm.md
  • 配置文件位于.\configs\kie\vi_layoutxlm\
  • 关键信息抽取数据集说明文档(介绍了FUNSD、XFUND、wildreceipt数据集三种).\doc\doc_ch\dataset\kie_datasets.md
  • 自己标注关键信息:PPOCRLabel使用文档./PPOCRLabel/README_ch.md

本文参考

-(本文主要参考这个)PP-Structure 文档分析-关键信息抽取-快速开始手册:.\ppstructure\kie\README_ch.md
主要使用这个文件夹里面的内容
在这里插入图片描述

其他参考:https://blog.csdn.net/m0_63642362/article/details/128894464

理论部分

基于多模态模型的关键信息抽取任务有2种主要的解决方案。

(1)文本检测 + 文本识别 + 语义实体识别(SER)
(2)文本检测 + 文本识别 + 语义实体识别(SER) + 关系抽取(RE)

关于上述解决方案的详细介绍,请参考关键信息抽取全流程指南:.\ppstructure\kie\how_to_do_kie.md
我们下面首先执行单SER

step0、环境准备

除了前期基础环境安装

git clone https://github.com/PaddlePaddle/PaddleOCR.git
cd PaddleOCR
pip install -r requirements.txt

以外,还有一句

pip install -r ppstructure/kie/requirements.txt

step1、下载解压VI-LayoutXLM推理模型

环境配置这里不赘述,可以参考博主之前的文章,下面默认已经下载好ppocr项目文件夹了:
下表来自《关键信息抽取算法-VI-LayoutXLM》.\doc\doc_ch\algorithm_kie_vi_layoutxlm.md
下载保存推理模型到项目根目录名为model的文件夹里面

模型骨干网络任务配置文件hmean下载链接
VI-LayoutXLMVI-LayoutXLM-baseSERser_vi_layoutxlm_xfund_zh_udml.yml93.19%训练模型/推理模型
VI-LayoutXLMVI-LayoutXLM-baseREre_vi_layoutxlm_xfund_zh_udml.yml83.92%训练模型/推理模型

或直接在终端下载+解压

#下载解压ser_vi_layoutxlm_xfund_infer.tar
wget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_infer.tar
tar -xvf ser_vi_layoutxlm_xfund_infer.tar#下载解压re_vi_layoutxlm_xfund_infer.tar
wget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/re_vi_layoutxlm_xfund_infer.tar
tar -xvf re_vi_layoutxlm_xfund_infer.tar

在这里插入图片描述
在这里插入图片描述

step2、下载XFUND数据集

下载XFUND数据集,放在根目录train_data文件夹里面,
下载解压:

# 准备XFUND数据集,对于推理,这里主要是为了获得字典文件class_list_xfun.txt
mkdir ./PaddleOCR/train_data
wget https://paddleocr.bj.bcebos.com/ppstructure/dataset/XFUND.tar
tar -xf XFUND.tar

之所以叫train_data,是因为和配置文件里面的路径保持一致,方便不修改yaml文件而直接用
在这里插入图片描述

step3、使用模型进行预测(基于PaddleInference)

使用前面下载好的SER推理模型

cd ppstructure
python3 kie/predict_kie_token_ser.py \--kie_algorithm=LayoutXLM \--ser_model_dir=../model/ser_vi_layoutxlm_xfund_infer \--image_dir=./docs/kie/input/zh_val_42.jpg \--ser_dict_path=../train_data/XFUND/class_list_xfun.txt \--vis_font_path=../doc/fonts/simfang.ttf \--ocr_order_method="tb-yx"

复制版
python3 kie/predict_kie_token_ser.py --kie_algorithm=LayoutXLM --ser_model_dir=../model/ser_vi_layoutxlm_xfund_infer --image_dir=./docs/kie/input/zh_val_42.jpg --ser_dict_path=../train_data/XFUND/class_list_xfun.txt --vis_font_path=../doc/fonts/simfang.ttf --ocr_order_method="tb-yx"

  • ser_model_dir:我放在model文件夹内,
  • image_dir:要预测的图片
  • ser_dict_path:指向数据集的list文件位置
  • vis_font_path:是字体文件夹

第一次运行会下载一些模型
在这里插入图片描述

可视化结果保存在ppstructure/output目录下
在这里插入图片描述
对应infer.txt
在这里插入图片描述

可以看到结果是以Question-Answer键值对识别的,但也有一些没被识别到的
end

ps:

手册里面还有一个使用tools/infer_kie_token_ser.py代码,PaddleOCR引擎的,我们在后面几篇再展开
#安装PaddleOCR引擎用于预测
pip install paddleocr -U

# 仅预测SER模型
python3 tools/infer_kie_token_ser.py \-c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml \-o Architecture.Backbone.checkpoints=./pretrained_model/ser_vi_layoutxlm_xfund_pretrained/best_accuracy \Global.infer_img=./ppstructure/docs/kie/input/zh_val_42.jpg# SER + RE模型串联
python3 ./tools/infer_kie_token_ser_re.py \-c configs/kie/vi_layoutxlm/re_vi_layoutxlm_xfund_zh.yml \-o Architecture.Backbone.checkpoints=./pretrained_model/re_vi_layoutxlm_xfund_pretrained/best_accuracy \Global.infer_img=./train_data/XFUND/zh_val/image/zh_val_42.jpg \-c_ser configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml \-o_ser Architecture.Backbone.checkpoints=./pretrained_model/ser_vi_layoutxlm_xfund_pretrained/best_accuracy

在关键信息抽取手册md.\doc\doc_ch\kie.md还有一个使用 预训练模型的预测(tools/infer_kie_token_ser.py)
我们在后面几篇再展开:
如您通过 python3 tools/train.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml 完成了模型的训练过程。您可以使用如下命令进行中文模型预测。
python3 tools/infer_kie_token_ser.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml -o Architecture.Backbone.checkpoints=./pretrained_model/ser_vi_layoutxlm_xfund_pretrained/best_accuracy Global.infer_img=./ppstructure/docs/kie/input/zh_val_42.jpg
使用tools/infer_kie_token_ser.py需要首先有训练产生的checkpoints : ./output/ser_vi_layoutxlm_xfund_zh/best_accuracy作为支持,所以只能在训练后使用,具体在本系列第三篇展开

相关内容