实际中,我们不知道一些样本对应的真实分布。比如我们手上有NpN_pNp个样本{hn}n=1Np\{ \boldsymbol h_n \}_{n=1}^{N_p}{hn}n=1Np,这些样本都对应到某个特定的label,比如特定的数字或者类。令真实的分布为f(h)f(\boldsymbol h)f(h),我们可以通过经验产生大量样本来近似该分布。定义fff的近似为p(h)p(\boldsymbol h)p(h),并且限制分布ppp为Gaussian Mixture, i.e.
p(h)=∑k=1KαkCN(h;μk,Ck)(20)p \left (\boldsymbol h \right) = \sum_{k=1}^K \alpha_k \mathcal{CN}(\boldsymbol h; \boldsymbol \mu_k, \boldsymbol{C}_k) \tag{20} p(h)=k=1∑KαkCN(h;μk,Ck)(20)
其中h∈CL×1\boldsymbol h \in \mathbb{C}^{L \times 1}h∈CL×1,μk∈CL×1\boldsymbol{\mu_k} \in \mathbb{C}^{L \times 1}μk∈CL×1,Ck∈CL×L\boldsymbol{C}_k \in \mathbb{C}^{L \times L}Ck∈CL×L。假设我们固定第ppp个标识label,然后经验生成NpN_pNp个样本,记为{hn}n=1Np\{ \boldsymbol h_n \}_{n=1}^{N_p}{hn}n=1Np,我们要最大化似然函数:
max{αk,μk,Ck}ln(∏n=1Np∑k=1KαkCN(hn;μk,Ck))=∑n=1Npln(∑k=1KαkCN(hn;μk,Ck))(21)\begin{aligned} \max_{\{ \alpha_k, \boldsymbol{\mu}_k, \boldsymbol{C}_k \}} & \ln \left ( \prod_{n=1}^{N_p} \sum_{k=1}^K \alpha_k \mathcal{CN}(\boldsymbol h_n; \boldsymbol \mu_k, \boldsymbol{C}_k) \right ) \\ = & \sum_{n=1}^{N_p} \ln \left( \sum_{k=1}^K \alpha_k \mathcal{CN}(\boldsymbol h_n; \boldsymbol \mu_k, \boldsymbol{C}_k) \right )\\ \end{aligned} \tag{21} {αk,μk,Ck}max=ln⎝⎛n=1∏Npk=1∑KαkCN(hn;μk,Ck)⎠⎞n=1∑Npln(k=1∑KαkCN(hn;μk,Ck))(21)
我们采用EM算法进行相关参数的估计。正式计算之前,先引入一个隐变量z∈{1,⋯,K}z \in \{1,\cdots,K\}z∈{1,⋯,K}表征GMM中的第几个模(mode)。当K→∞K \rightarrow \inftyK→∞时,我们认为GMM能够很好地逼近原始分布。那么反过来,等效地来看,引入的隐变量zzz可以解释为:先根据隐变量zzz的先验p(z=k)p(z=k)p(z=k)确定第kkk个mode,再基于似然p(hn∣zn=k)p(\boldsymbol h_n|z^n=k)p(hn∣zn=k),由第kkk个mode来产生相应的样本生成(sample)。根据相关概率公式,我们进一步描述其概率意义:
k-th mode: p(hn,zn=k)=p(zn=k)p(hn∣zn=k)all modes: p(hn)=∑zp(hn,zn=k)=∑zp(zn=k)p(hn∣zn=k)posterior of k-th mode: p(zn=k∣hn)=p(zn=k)p(hn∣zn=k)p(hn)=p(zn=k)p(hn∣zn=k)∑zp(zn=k)p(hn∣zn=k)\begin{aligned} \text{k-th mode: } & p(\boldsymbol h_n,z^n=k) = p(z^n=k) p(\boldsymbol h_n|z^n=k) \\ \text{all modes: } & p(\boldsymbol h_n) = \sum_z p(\boldsymbol h_n,z^n=k) = \sum_z p(z^n=k) p(\boldsymbol h_n|z^n=k) \\ \text{posterior of k-th mode: }& p(z^n=k|\boldsymbol h_n) = \frac{p(z^n=k) p(\boldsymbol h_n|z^n=k)}{p(\boldsymbol h_n)} = \frac{p(z^n=k) p(\boldsymbol h_n|z^n=k)}{\sum_z p(z^n=k) p(\boldsymbol h_n|z^n=k)} \end{aligned} k-th mode: all modes: posterior of k-th mode: p(hn,zn=k)=p(zn=k)p(hn∣zn=k)p(hn)=z∑p(hn,zn=k)=z∑p(zn=k)p(hn∣zn=k)p(zn=k∣hn)=p(hn)p(zn=k)p(hn∣zn=k)=∑zp(zn=k)p(hn∣zn=k)p(zn=k)p(hn∣zn=k)
我们将EM算法的步骤描述为:对于第t+1t+1t+1次迭代
(1) E步:固定第ttt次迭代的参数{αkt,μkt,Ckt}k=1K\{\alpha^t_k, \boldsymbol \mu^t_k, \boldsymbol{C}^t_k \}_{k=1}^K{αkt,μkt,Ckt}k=1K,对∀n,k\forall n,k∀n,k,即第nnn个sample,第kkk个mode,计算后验后验分布,定义为
γnkt+1≐p(zn=k∣hn)=p(zn=k)p(hn∣zn=k)p(hn)=αktCN(hn;μkt,Ckt)∑k=1KαktCN(hn;μkt,Ckt),∀n,k(22)\begin{aligned} \gamma^{t+1}_{nk} & \doteq p(z^n=k| \boldsymbol h_n) \\ &= \frac{p(z^n=k) p(\boldsymbol h_n|z^n=k)}{p(\boldsymbol h_n)} \\ &= \frac{ \alpha^t_k \mathcal{CN}(\boldsymbol h_n; \boldsymbol \mu^t_k, \boldsymbol{C}^t_k) } { \sum_{k=1}^K \alpha^t_k \mathcal{CN}(\boldsymbol h_n; \boldsymbol \mu^t_k, \boldsymbol{C}^t_k) }, \ \ \forall n,k \end{aligned} \tag{22} γnkt+1≐p(zn=k∣hn)=p(hn)p(zn=k)p(hn∣zn=k)=∑k=1KαktCN(hn;μkt,Ckt)αktCN(hn;μkt,Ckt), ∀n,k(22)
经过E步,我们便得到了一组后验分布{γnkt+1}n,k\{\gamma^{t+1}_{nk}\}_{n,k}{γnkt+1}n,k
(2) M步:固定后验分布{γnkt+1}n,k\{\gamma^{t+1}_{nk}\}_{n,k}{γnkt+1}n,k,通过最大化证据下界(Evidence Lower BOund)(即对数边际似然logp(h;α,μ,C)\log p(\boldsymbol h;\alpha, \boldsymbol \mu, \boldsymbol{C})logp(h;α,μ,C)的下界),来估计第t+1t+1t+1次迭代的参数{αkt+1,μkt+1,Ckt+1}k=1K\{ \alpha^{t+1}_k, \boldsymbol \mu^{t+1}_k, \boldsymbol{C}^{t+1}_k \}_{k=1}^K{αkt+1,μkt+1,Ckt+1}k=1K
ELBO({γnkt+1}n,k,{hn}n;{αkt+1,μkt+1,Ckt+1}k=1K)=∑n=1Np∑k=1Kγnkt+1logp(hn,zn=k)γnkt+1=∑n=1Np∑k=1Kγnkt+1logp(zn=k)p(hn∣zn=k)γnkt+1=∑n=1Np∑k=1Kγnkt+1logαkt+1⋅CN(hn;μkt+1,Ckt+1)γnkt+1=∑n=1Np∑k=1Kγnkt+1(−∥(Ckt+1)−12(hn−μkt+1)∥22+logαkt+1−log∣Ckt+1∣)+C(23)\begin{aligned} & \ \ \ \ ELBO \left (\{\gamma^{t+1}_{nk}\}_{n,k}, \{ \boldsymbol h_n \}_n ; \{ \alpha^{t+1}_k, \boldsymbol \mu^{t+1}_k, \boldsymbol{C}^{t+1}_k \}_{k=1}^K \right ) \\ & = \sum_{n=1}^{N_p} \sum_{k=1}^K \gamma^{t+1}_{nk} \log \frac{p(\boldsymbol h_n,z^n=k)}{ \gamma^{t+1}_{nk}} \\ & = \sum_{n=1}^{N_p} \sum_{k=1}^K \gamma^{t+1}_{nk} \log \frac{p(z^n=k) p(\boldsymbol h_n|z^n=k)}{ \gamma^{t+1}_{nk}} \\ & = \sum_{n=1}^{N_p} \sum_{k=1}^K \gamma^{t+1}_{nk} \log \frac{\alpha^{t+1}_k \cdot \mathcal{CN}(\boldsymbol h_n; \boldsymbol \mu^{t+1}_k, \boldsymbol{C}^{t+1}_k)}{ \gamma^{t+1}_{nk}} \\ &= \sum_{n=1}^{N_p} \sum_{k=1}^K \gamma^{t+1}_{nk} \left ( - \left \Vert (\boldsymbol{C}^{t+1}_k)^{-\frac{1}{2}} \left ( \boldsymbol h_n - \boldsymbol{\mu}^{t+1}_k \right) \right \Vert^2_2 + \log \alpha^{t+1}_k - \log \left \vert \boldsymbol{{C}}^{t+1}_k \right \vert \right) + C \end{aligned} \tag{23} ELBO({γnkt+1}n,k,{hn}n;{αkt+1,μkt+1,Ckt+1}k=1K)=n=1∑Npk=1∑Kγnkt+1logγnkt+1p(hn,zn=k)=n=1∑Npk=1∑Kγnkt+1logγnkt+1p(zn=k)p(hn∣zn=k)=n=1∑Npk=1∑Kγnkt+1logγnkt+1αkt+1⋅CN(hn;μkt+1,Ckt+1)=n=1∑Npk=1∑Kγnkt+1(−∥∥∥(Ckt+1)−21(hn−μkt+1)∥∥∥22+logαkt+1−log∣∣Ckt+1∣∣)+C(23)
其中CCC是与{αkt+1,μkt+1,Ckt+1}k=1K\{ \alpha^{t+1}_k, \boldsymbol \mu^{t+1}_k, \boldsymbol{C}^{t+1}_k \}_{k=1}^K{αkt+1,μkt+1,Ckt+1}k=1K无关的常数。上述最大化ELBO转化为优化问题:
arg max{αkt+1,μkt+1,Ckt+1}∑n=1Np∑k=1Kγnkt+1(−∥(Ckt+1)−12(hn−μkt+1)∥22+logαkt+1−log∣Ckt+1∣)s.t. ∑k=1Kαk=1(24)\begin{aligned} & \argmax_{\{ \alpha^{t+1}_k, \boldsymbol \mu^{t+1}_k, \boldsymbol{C}^{t+1}_k \}} \sum_{n=1}^{N_p} \sum_{k=1}^K \gamma^{t+1}_{nk} \left ( - \left \Vert (\boldsymbol{C}^{t+1}_k)^{-\frac{1}{2}} \left (\boldsymbol h_n- \boldsymbol{\mu}^{t+1}_k \right) \right \Vert^2_2 + \log \alpha^{t+1}_k - \log \left \vert \boldsymbol{{C}}^{t+1}_k \right \vert \right) \\ & \text{s.t. } \sum_{k=1}^K \alpha_k = 1 \end{aligned} \tag{24} {αkt+1,μkt+1,Ckt+1}argmaxn=1∑Npk=1∑Kγnkt+1(−∥∥∥(Ckt+1)−21(hn−μkt+1)∥∥∥22+logαkt+1−log∣∣Ckt+1∣∣)s.t. k=1∑Kαk=1(24)
利用拉格朗日函数:
g:∑n=1Np∑k=1Kγnkt+1(−∥(Ckt+1)−12(hn−μkt+1)∥22+logαkt+1−log∣Ckt+1∣)−λ(∑k=1Kαk−1)(25)g: \sum_{n=1}^{N_p} \sum_{k=1}^K \gamma^{t+1}_{nk} \left ( - \left \Vert (\boldsymbol{C}^{t+1}_k)^{-\frac{1}{2}} \left ( \boldsymbol h_n - \boldsymbol{\mu}^{t+1}_k \right) \right \Vert^2_2 + \log \alpha^{t+1}_k - \log \left \vert \boldsymbol{{C}}^{t+1}_k \right \vert \right) - \lambda (\sum_{k=1}^K \alpha_k - 1) \tag{25} g:n=1∑Npk=1∑Kγnkt+1(−∥∥∥(Ckt+1)−21(hn−μkt+1)∥∥∥22+logαkt+1−log∣∣Ckt+1∣∣)−λ(k=1∑Kαk−1)(25)
求关于{αkt+1,μkt+1,Ckt+1}\{ \alpha^{t+1}_k, \boldsymbol \mu^{t+1}_k, \boldsymbol{C}^{t+1}_k \}{αkt+1,μkt+1,Ckt+1}的偏导数:
∂g∂αkt+1=0∂g∂μkt+1=0∂g∂Ckt+1=0(26)\begin{aligned} \frac{\partial g}{\partial \alpha^{t+1}_k} &= 0 \\ \frac{\partial g}{\partial \boldsymbol \mu^{t+1}_k} &= \boldsymbol 0 \\ \frac{\partial g}{\partial \boldsymbol{C}^{t+1}_k} &= \boldsymbol 0 \\ \end{aligned} \tag{26} ∂αkt+1∂g∂μkt+1∂g∂Ckt+1∂g=0=0=0(26)
在实际计算时,为了简化,可以取Ck=σk2I\boldsymbol{C}_k=\sigma^2_k \boldsymbol{I}Ck=σk2I,即等高线为圆的高斯,这时式(25)可以化简为
g:∑n=1Np∑k=1Kγnkt+1(−1σk2∥(hn−μkt+1)∥22+logαkt+1−2NUENBSlogσk)−λ(∑k=1Kαk−1)g: \sum_{n=1}^{N_p} \sum_{k=1}^K \gamma^{t+1}_{nk} \left ( - \frac{1}{\sigma^2_k} \left \Vert \left (\boldsymbol h_n- \boldsymbol{\mu}^{t+1}_k \right) \right \Vert^2_2 + \log \alpha^{t+1}_k - 2 N_{UE} N_{BS} \log \sigma_k \right) - \lambda (\sum_{k=1}^K \alpha_k - 1) g:n=1∑Npk=1∑Kγnkt+1(−σk21∥∥(hn−μkt+1)∥∥22+logαkt+1−2NUENBSlogσk)−λ(k=1∑Kαk−1)
将式(26)代入到上式
首先对αk\alpha_kαk求导
∂g∂αk=∑n=1Npγnkt+1⋅1αk−λ=0⇒αk=∑n=1Npγnkt+1λ\begin{aligned} & \frac{\partial g}{\partial \alpha^{}_k} = \sum_{n=1}^{N_p} \gamma^{t+1}_{nk} \cdot \frac{1}{\alpha^{}_k} - \lambda = 0 \\ \Rightarrow & \alpha_k = \frac{\sum_{n=1}^{N_p} \gamma^{t+1}_{nk}}{ \lambda } \end{aligned} ⇒∂αk∂g=n=1∑Npγnkt+1⋅αk1−λ=0αk=λ∑n=1Npγnkt+1
又因为∑k=1Kαk=1\sum_{k=1}^K \alpha_k = 1∑k=1Kαk=1,因此λ=Np\lambda=N_pλ=Np,故
αk=∑n=1Npγnkt+1Np\alpha_k = \frac{\sum_{n=1}^{N_p} \gamma^{t+1}_{nk}}{ N_p } αk=Np∑n=1Npγnkt+1
然后对μk∈CL×1\boldsymbol{\mu}_k \in \mathbb{C}^{L \times 1}μk∈CL×1求导
∂g∂μk=∑n=1Npγnkt+1⋅(−1σk2)2(μk−hn)=0⇒∑n=1Npγnkt+1⋅(μk−hn)=0⇒μk⋅∑n=1Npγnkt+1=∑n=1Npγnkt+1hn⇒μk=∑n=1Npγnkt+1hn∑n=1Npγnkt+1\begin{aligned} & \frac{\partial g}{\partial \boldsymbol \mu^{}_k} = \sum_{n=1}^{N_p} \gamma^{t+1}_{nk} \cdot ( - \frac{1}{\sigma^2_k}) 2\left (\boldsymbol{\mu}_k - \boldsymbol h_n \right ) = 0 \\ \Rightarrow & \sum_{n=1}^{N_p} \gamma^{t+1}_{nk} \cdot \left (\boldsymbol{\mu}_k - \boldsymbol h_n \right ) = 0 \\ \Rightarrow & \boldsymbol{\mu}_k \cdot \sum_{n=1}^{N_p} \gamma^{t+1}_{nk} = \sum_{n=1}^{N_p} \gamma^{t+1}_{nk} \boldsymbol h_n \\ \Rightarrow & \boldsymbol{\mu}_k = \frac{\sum_{n=1}^{N_p} \gamma^{t+1}_{nk} \boldsymbol h_n}{\sum_{n=1}^{N_p} \gamma^{t+1}_{nk}} \end{aligned} ⇒⇒⇒∂μk∂g=n=1∑Npγnkt+1⋅(−σk21)2(μk−hn)=0n=1∑Npγnkt+1⋅(μk−hn)=0μk⋅n=1∑Npγnkt+1=n=1∑Npγnkt+1hnμk=∑n=1Npγnkt+1∑n=1Npγnkt+1hn
最后对σk\sigma_kσk求导
∂g∂σk=∑n=1Npγnkt+1(1σk3∥(hn−μkt+1)∥22−2NUENBS1σk)=0⇒σk2=12NUENBS⋅∑n=1Npγnkt+1∥(hn−μkt+1)∥22∑n=1Npγnkt+1\begin{aligned} & \frac{\partial g}{\partial \sigma_k} = \sum_{n=1}^{N_p} \gamma^{t+1}_{nk} \left ( \frac{1}{\sigma^3_k} \left \Vert \left ( \boldsymbol h_n - \boldsymbol{\mu}^{t+1}_k \right) \right \Vert^2_2 - 2 N_{UE} N_{BS} \frac{1}{\sigma_k} \right) = 0 \\ \Rightarrow & \sigma^2_k = \frac{1}{2 N_{UE} N_{BS}} \cdot \frac{\sum_{n=1}^{N_p} \gamma^{t+1}_{nk} \left \Vert \left ( \boldsymbol h_n - \boldsymbol{\mu}^{t+1}_k \right) \right \Vert^2_2}{\sum_{n=1}^{N_p} \gamma^{t+1}_{nk}} \end{aligned} ⇒∂σk∂g=n=1∑Npγnkt+1(σk31∥∥(hn−μkt+1)∥∥22−2NUENBSσk1)=0σk2=2NUENBS1⋅∑n=1Npγnkt+1∑n=1Npγnkt+1∥∥(hn−μkt+1)∥∥22
首先对αk\alpha_kαk求导
∂g∂αk=∑n=1Npγnkt+1⋅1αk−λ=0⇒αk=∑n=1Npγnkt+1λ\begin{aligned} & \frac{\partial g}{\partial \alpha^{}_k} = \sum_{n=1}^{N_p} \gamma^{t+1}_{nk} \cdot \frac{1}{\alpha^{}_k} - \lambda = 0 \\ \Rightarrow & \alpha_k = \frac{\sum_{n=1}^{N_p} \gamma^{t+1}_{nk}}{ \lambda } \end{aligned} ⇒∂αk∂g=n=1∑Npγnkt+1⋅αk1−λ=0αk=λ∑n=1Npγnkt+1
又因为∑k=1Kαk=1\sum_{k=1}^K \alpha_k = 1∑k=1Kαk=1,因此λ=Np\lambda=N_pλ=Np
然后对μk∗∈CL×1\boldsymbol{\mu}^{*}_k \in \mathbb{C}^{L \times 1}μk∗∈CL×1求导,根据公式(复矩阵求导):
∂(bHx)∂x∗=0,∂(xHb)∂x∗=b∂(xHAx)∂x∗=Ax\begin{aligned} & \frac{\partial ( \boldsymbol b^H \boldsymbol x )}{ \partial \boldsymbol x^{*} } = \boldsymbol{0}, \ \ \frac{\partial ( \boldsymbol x^H \boldsymbol b )}{ \partial \boldsymbol x^{*} } = \boldsymbol{b} \\ & \frac{\partial ( \boldsymbol x^H \boldsymbol{A} \boldsymbol x )}{ \partial \boldsymbol x^{*} } = \boldsymbol{Ax} \end{aligned} ∂x∗∂(bHx)=0, ∂x∗∂(xHb)=b∂x∗∂(xHAx)=Ax
进一步,
∂g∂μk∗=∂∂μk∗∑n=1Np−γnkt+1∥(Ckt+1)−12(hn−μkt+1)∥22=∑n=1Np−γnkt+1∂∂μk∗(hn−μkt+1)H(Ckt+1)−1(hn−μkt+1)=∑n=1Npγnkt+1(Ckt+1)−1(μkt+1−hn)=(Ckt+1)−1∑n=1Npγnkt+1(μkt+1−hn)=0⇒μk=∑n=1Npγnkt+1hn∑n=1Npγnkt+1\begin{aligned} \frac{ \partial g }{ \partial \boldsymbol{\mu}^{*}_k} &= \frac{ \partial }{ \partial \boldsymbol{\mu}^{*}_k} \sum_{n=1}^{N_p} - \gamma^{t+1}_{nk} \left \Vert (\boldsymbol{C}^{t+1}_k)^{-\frac{1}{2}} \left (\boldsymbol h_n- \boldsymbol{\mu}^{t+1}_k \right) \right \Vert^2_2 \\ &= \sum_{n=1}^{N_p} - \gamma^{t+1}_{nk} \frac{ \partial }{ \partial \boldsymbol{\mu}^{*}_k} \left( \boldsymbol h_n- \boldsymbol{\mu}^{t+1}_k \right )^H (\boldsymbol{C}^{t+1}_k)^{-1} \left( \boldsymbol h_n - \boldsymbol{\mu}^{t+1}_k \right ) \\ &= \sum_{n=1}^{N_p} \gamma^{t+1}_{nk} (\boldsymbol{C}^{t+1}_k)^{-1} \left( \boldsymbol{\mu}^{t+1}_k - \boldsymbol h_n \right ) \\ &= (\boldsymbol{C}^{t+1}_k)^{-1} \sum_{n=1}^{N_p} \gamma^{t+1}_{nk} \left( \boldsymbol{\mu}^{t+1}_k - \boldsymbol h_n \right ) = \boldsymbol{0} \\ \Rightarrow \boldsymbol{\mu}_k & = \frac{\sum_{n=1}^{N_p} \gamma^{t+1}_{nk} \boldsymbol h_n}{\sum_{n=1}^{N_p} \gamma^{t+1}_{nk}} \end{aligned} ∂μk∗∂g⇒μk=∂μk∗∂n=1∑Np−γnkt+1∥∥∥(Ckt+1)−21(hn−μkt+1)∥∥∥22=n=1∑Np−γnkt+1∂μk∗∂(hn−μkt+1)H(Ckt+1)−1(hn−μkt+1)=n=1∑Npγnkt+1(Ckt+1)−1(μkt+1−hn)=(Ckt+1)−1n=1∑Npγnkt+1(μkt+1−hn)=0=∑n=1Npγnkt+1∑n=1Npγnkt+1hn
最后对Ck\boldsymbol C_kCk求导,但是实际中,为了方便处理,我们是对(Ck−1)∗(\boldsymbol C^{-1}_k)^*(Ck−1)∗进行求导,在求导之前,我们回顾一些基本概念。
回顾:如果A∈CN×N\boldsymbol{A} \in \mathbb{C}^{N \times N}A∈CN×N是正定矩阵,那么根据det(A)=∏nλn\text{det}(\boldsymbol{A})=\prod_{n} \lambda_ndet(A)=∏nλn,我们可以得到det(A)=det(A∗)=det(AT)=det(AH)\text{det}(\boldsymbol{A})=\text{det}(\boldsymbol{A}^*)=\text{det}(\boldsymbol{A}^T)=\text{det}(\boldsymbol{A}^H)det(A)=det(A∗)=det(AT)=det(AH)。另外,det(A)=1det(A−1)\text{det}(\boldsymbol{A})=\frac{1}{\text{det}(\boldsymbol{A}^{-1})}det(A)=det(A−1)1。因此我们可以把拉格朗日函数ggg重写为
g:∑n=1Np∑k=1Kγnkt+1(−∥(Ckt+1)−12(hn−μkt+1)∥22+logαkt+1−log∣Ckt+1∣)−λ(∑k=1Kαk−1)=∑n=1Np∑k=1Kγnkt+1(−(hn−μkt+1)H(Ckt+1)−1(hn−μkt+1)+logαkt+1+log∣((Ckt+1)−1)∗∣)−λ(∑k=1Kαk−1)\begin{aligned} g:& \ \ \ \ \sum_{n=1}^{N_p} \sum_{k=1}^K \gamma^{t+1}_{nk} \left ( - \left \Vert (\boldsymbol{C}^{t+1}_k)^{-\frac{1}{2}} \left ( \boldsymbol h_n - \boldsymbol{\mu}^{t+1}_k \right) \right \Vert^2_2 + \log \alpha^{t+1}_k - \log \left \vert \boldsymbol{{C}}^{t+1}_k \right \vert \right) - \lambda (\sum_{k=1}^K \alpha_k - 1) \\ &= \sum_{n=1}^{N_p} \sum_{k=1}^K \gamma^{t+1}_{nk} \left ( - \left( \boldsymbol h_n - \boldsymbol{\mu}^{t+1}_k \right )^H (\boldsymbol{C}^{t+1}_k)^{-1} \left( \boldsymbol h_n - \boldsymbol{\mu}^{t+1}_k \right ) + \log \alpha^{t+1}_k + \log \left \vert ((\boldsymbol{{C}}^{t+1}_k)^{-1})^* \right \vert \right) - \lambda (\sum_{k=1}^K \alpha_k - 1) \end{aligned} g: n=1∑Npk=1∑Kγnkt+1(−∥∥∥(Ckt+1)−21(hn−μkt+1)∥∥∥22+logαkt+1−log∣∣Ckt+1∣∣)−λ(k=1∑Kαk−1)=n=1∑Npk=1∑Kγnkt+1(−(hn−μkt+1)H(Ckt+1)−1(hn−μkt+1)+logαkt+1+log∣∣((Ckt+1)−1)∗∣∣)−λ(k=1∑Kαk−1)
根据公式,若A∈CN×N\boldsymbol{A} \in \mathbb{C}^{N \times N}A∈CN×N
∂yHAHx∂A∗=xyH∂det(A)∂A=det(A)⋅(AT)−1\begin{aligned} \frac{ \partial \boldsymbol{y}^H \boldsymbol{A}^H \boldsymbol{x} }{ \partial \boldsymbol{A}^{*} } &= \boldsymbol{x} \boldsymbol{y}^H \\ \frac{\partial \text{det}(\boldsymbol{A})}{ \partial \boldsymbol{A} } &= \text{det}(\boldsymbol{A}) \cdot (\boldsymbol{A}^T)^{-1} \end{aligned} ∂A∗∂yHAHx∂A∂det(A)=xyH=det(A)⋅(AT)−1
对(Ck−1)∗(\boldsymbol C^{-1}_k)^*(Ck−1)∗进行求导:
∂g∂(Ck−1)∗=∑n=1Npγnkt+1(−(hn−μkt+1)(hn−μkt+1)H+Ckt+1)=Ckt+1∑n=1Npγnkt+1−∑n=1Npγnkt+1(hn−μkt+1)(hn−μkt+1)H=0⇒Ckt+1=∑n=1Npγnkt+1(hn−μkt+1)(hn−μkt+1)H∑n=1Npγnkt+1\begin{aligned} \frac{\partial g}{ \partial (\boldsymbol C^{-1}_k)^*} &= \sum_{n=1}^{N_p} \gamma^{t+1}_{nk} \left (- \left( \boldsymbol h_n - \boldsymbol{\mu}^{t+1}_k \right ) \left( \boldsymbol h_n - \boldsymbol{\mu}^{t+1}_k \right )^H + \boldsymbol{C}^{t+1}_k \right ) \\ &= \boldsymbol{C}^{t+1}_k \sum_{n=1}^{N_p} \gamma^{t+1}_{nk} - \sum_{n=1}^{N_p} \gamma^{t+1}_{nk} \left( \boldsymbol h_n - \boldsymbol{\mu}^{t+1}_k \right ) \left( \boldsymbol h_n - \boldsymbol{\mu}^{t+1}_k \right )^H = 0 \\ \Rightarrow \boldsymbol{C}^{t+1}_k &= \frac{\sum_{n=1}^{N_p} \gamma^{t+1}_{nk} \left( \boldsymbol h_n - \boldsymbol{\mu}^{t+1}_k \right ) \left( \boldsymbol h_n - \boldsymbol{\mu}^{t+1}_k \right )^H}{\sum_{n=1}^{N_p} \gamma^{t+1}_{nk}} \end{aligned} ∂(Ck−1)∗∂g⇒Ckt+1=n=1∑Npγnkt+1(−(hn−μkt+1)(hn−μkt+1)H+Ckt+1)=Ckt+1n=1∑Npγnkt+1−n=1∑Npγnkt+1(hn−μkt+1)(hn−μkt+1)H=0=∑n=1Npγnkt+1∑n=1Npγnkt+1(hn−μkt+1)(hn−μkt+1)H
这与我们的直觉是一致的。
αk=∑n=1Npγnkt+1Npμk=∑n=1Npγnkt+1hn∑n=1Npγnkt+1σk2=12NUENBS⋅∑n=1Npγnkt+1∥(hn−μkt+1)∥22∑n=1Npγnkt+1\begin{aligned} \alpha_k &= \frac{\sum_{n=1}^{N_p} \gamma^{t+1}_{nk}}{ N_p } \\ \boldsymbol{\mu}_k &= \frac{\sum_{n=1}^{N_p} \gamma^{t+1}_{nk} \boldsymbol h_n}{\sum_{n=1}^{N_p} \gamma^{t+1}_{nk}} \\ \sigma^2_k &= \frac{1}{2 N_{UE} N_{BS}} \cdot \frac{\sum_{n=1}^{N_p} \gamma^{t+1}_{nk} \left \Vert \left ( \boldsymbol h_n - \boldsymbol{\mu}^{t+1}_k \right) \right \Vert^2_2}{\sum_{n=1}^{N_p} \gamma^{t+1}_{nk}} \end{aligned} αkμkσk2=Np∑n=1Npγnkt+1=∑n=1Npγnkt+1∑n=1Npγnkt+1hn=2NUENBS1⋅∑n=1Npγnkt+1∑n=1Npγnkt+1∥∥(hn−μkt+1)∥∥22
αk=∑n=1Npγnkt+1Npμk=∑n=1Npγnkt+1hn∑n=1Npγnkt+1Ck=∑n=1Npγnkt+1(hn−μkt+1)(hn−μkt+1)H∑n=1Npγnkt+1\begin{aligned} \alpha_k &= \frac{\sum_{n=1}^{N_p} \gamma^{t+1}_{nk}}{ N_p } \\ \boldsymbol{\mu}_k &= \frac{\sum_{n=1}^{N_p} \gamma^{t+1}_{nk} \boldsymbol h_n}{\sum_{n=1}^{N_p} \gamma^{t+1}_{nk}} \\ \boldsymbol{C}^{}_k &= \frac{\sum_{n=1}^{N_p} \gamma^{t+1}_{nk} \left( \boldsymbol h_n - \boldsymbol{\mu}^{t+1}_k \right ) \left( \boldsymbol h_n - \boldsymbol{\mu}^{t+1}_k \right )^H}{\sum_{n=1}^{N_p} \gamma^{t+1}_{nk}} \end{aligned} αkμkCk=Np∑n=1Npγnkt+1=∑n=1Npγnkt+1∑n=1Npγnkt+1hn=∑n=1Npγnkt+1∑n=1Npγnkt+1(hn−μkt+1)(hn−μkt+1)H